

Overview

- **URS**
- Why water?
- What's the difference between water management and water stewardship?
- How does Water Footprint Assessment help?
- Case study

URS

- Leading provider of engineering, construction and technical services for public and private sector clients worldwide
- Fully integrated capabilities to support every stage of the project life cycle — inception through start-up and operation to decommissioning and closure
- >50,000 employees in nearly 50 countries
- Water stewardship services include
 - Water efficiency and minimization
 - Water resource management / watershed assessment
 - Water footprint calculation and assessment
 - Flood risk and flood management
 - Wastewater management
- Long relationship working with NASA
 - Successfully completed multiple engineering and environmental programs, including performing Environmental Functional Reviews all NASA Centers

Why Water?

- Pressure is mounting
 - Population growth
 - Economic growth
 - Supply degradation
 - Climate change
- By 2030 global water demand will outpace supply by 40%
- 2/3rds of world's population will live in water-stressed conditions by 2025

Water and Energy

- The water sector is becoming more energy intensive
 - Desalination
 - Pumping deeper groundwater
 - Large scale (inter basin) water transfers
- The energy sector is becoming more water intensive
 - Cooling water in power plants
 - Extracting and processing fossil fuels
 - Growing biofuels
 - Shale gas

The Challenge

Signs of Water Stress

Images from August 2000 (left) and August 2014 (right) show the drop in water levels in the Aral Sea.

Signs of Water Stress

Signs of Water Stress

Why Water?

- World Economic Forum's 2014 Global Risk Report ranked 'water crises' 3rd in global risks of greatest concern
- 46% U.S. companies already suffered detrimental business impacts as a result of water issues
- Costs for some as high as US\$400 million and projected impacts as high as US\$1 billion October 9,2014

Metals & Mining: a sector under water pressure

Analysis for institutional investors of critical issues facing the industry

Water Shortage Puts Companies, Investments at Risk

Both US assets and entire companies – including UNS Energy,
Black Hills Corporation, MGE Energy and Sempra Energy – are
at risk due to choices soon to be made over whether to use water
for crop production or electricity generation, according to a
report from MSCI's Environmental, Sustainability &
Governance unit.

Why Americans need to ante up for water

This summer, a 90-year-old water pipe burst under Sunset Boulevard in Los Angeles, sending a geyeer 30 feit into the air and a flood of troubles over the UCLA campus. Raging water and mud trapped five people, swamped 1,000 cars and flooded five university buildings — blasting the doors off elevators and ruining the new wooden floor atop the Bruins' storied baskball court.

Email | Print | Single Page View

As the campus dried out, though, Angelenos seemed less upset about the replaceable

Water Stewardship

Definition:

"a progression of increased improvement of water use and a reduction in the water-related impacts of internal and value chain operations. More importantly, it is a commitment to the sustainable management of shared water resources in the public interest through collective action with other businesses, governments, NGOs and communities."

Water Stewardship

Water Stewardship

Water Footprint Assessment

- ✓ Volume of fresh water used to product the product (a commodity / good /service etc.) summed over the various steps of the production chain
 - Rainwater in growing agricultural raw materials
 - Water added into a product
 - Water used to generate the energy
 - Water used in washing / cooling / processing
 - Water used by consumers
 - Volume of water polluted
- When and where water is used
 - Water used locally and globally

Beyond the Fence line

Beyond the Fence line

Water Footprint Example

✓ Water footprint of a 0.5 liter PET-bottle coke

- 0.44 liter water content
- 3.0 liter for other ingredients & overheads
- 5.3 liter for PET bottle and closure
- 27.6 liter for sugar

36 liter total

Water Footprint Examples

17,000

- Sheet of paper = 10 liters
- Sulphuric acid = 2,700 liters/ton
- 1 liter bioethanol (from maize) = 2,900 liters
- Cement = 3,300 liters/ton
- Steel = 4,200 = liters /ton

Water Footprint of Energy

Primary energy carriers		Global average water footprint (liters/GJ)
Non- renewable	Natural gas	110
	Coal	160
	Crude oil	1,060
	Uranium	90
Renewable	Wind energy	0
	Solar thermal energy	270
	Hydropower	22,000
	Biomass energy	70,000 (average)

From Where?

Size and shape of water footprint

+

water resource impacts in the locations in which the water is consumed

=

Water footprint (impact) assessment

- Where constraints and pressures on water resources occur
- Risks and opportunities
- Information to formulate long-term water management policies and practices

Global water stress

Hotspots

Hotspots are where:

(1)the business has a substantial WF

(2) water is stressed

Source: Arjen Y. Hoekstra, 2009

Case Study: Household Goods Manufacturer

Water footprint

Water footprint x country specific scarcity factor = Water Impact

Case Study: Household Goods Manufacturer

Water footprint

Water footprint x country specific scarcity factor = Water Impact

Water Impact

81% Consumer Use

Case Study: Household Goods Manufacturer

- Improved understanding of where key water supply pressures will arise in relation to both direct operations and supply chain
- Focus water efficiency measures at the most at risk points of value chain
- Identify new opportunities for products and services to reduce overall water impact

To Summarize

- Consider own operations AND look beyond the fence line
- Water is not carbon location, location, location !
- Collaboration water is a shared resource

